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A pressure driven 2D channel flow at very low Reynolds numbers (Stokes flow) with a bubble sticking and
sliding along one of the walls is studied computationally using the boundary element method (BEM). The
moving three phase contact lines are modeled using a Tanner law wherein the contact line speed is lin-
early proportional to the deviation of the contact angle from its equilibrium value. Results are presented
with and without the effect of contact angle hysteresis. Including contact angle hysteresis allows us to
predict the stick-slide behavior of bubbles, which in turn affects the long term evolution and dynamics
of the bubbles. It is shown that the initial rapid contraction or expansion of the bubbles to achieve local
equilibrium with the surrounding pressure field results in cusps and bulges in the wall normal stress pro-
files. The wall shear stress also increases (with opposite signs upstream and downstream of the bubble)
as the fluid rushes in or out of the channel inlet and outlet. In the long term, bubbles slowly expand as
they slide along the channel wall. Contact lines are found to correspond to peaks in the wall normal and
shear stress profiles at all times. The effectiveness of bubbles in occluding flow through the channel is
also examined.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

This study is mainly motivated by a novel developmental gas
embolotherapy based cancer treatment modality [7]. In this ap-
proach, extremely small albumin coated liquid droplets (�6 l in
diameter; small enough to pass through capillaries) of a perfluoro-
carbon (C5F12; dodecafluoropentane (DDFP)) are injected into the
blood stream at a convenient location. Although these DDFP drop-
lets are superheated at body temperature (boiling point 29 �C at
atmospheric pressure), the albumin shell prevents the injected
droplets from spontaneously vaporizing. The motion of these drop-
lets is tracked using low intensity ultrasound. At the desired loca-
tion these droplets are selectively vaporized using high intensity
ultrasound, termed acoustic droplet vaporization (ADV), to form
gas bubbles that are several times larger in volume (�150 times)
than the initial droplets. These bubbles eventually lodge in the
microcirculation in or around the tumor to occlude its blood supply
and thus induce tumor necrosis. Previous studies have examined
ADV [28–30,33,54,55], bubble transport [10,21,22], the mechanics
of lodging of bubbles that are large compared to the vessel diame-
ter [11], and the ability to occlude flow in vivo [31].
ll rights reserved.

: +1 734 647 4834.
In order to design intelligent gas embolotherapy strategies, it is
of interest to know what conditions favor the lodging of bubbles so
as to reduce the flow rate through the vessel in question. In con-
trast, air embolism has an undesired presence of bubbles in the
vasculature [14,15,20,39,52]. The quest there is exactly the oppo-
site of gas embolotherapy and focused on eliminating occlusion
to restore blood flow. There are many other scenarios involving
the presence of gas bubbles in the cardiovascular system, such as
microbubble-induced angiogenesis and arteriogenesis, use of
acoustically driven microbubbles as ultrasound contrast agents,
etc. A comprehensive review of a variety of situations in which
we encounter gas bubbles in the cardiovascular system and recent
advances in enhancing our understanding of cardiovascular bubble
dynamics can be found in Bull [7,8]. Whether gas bubbles are
deliberately created for diagnostic or therapeutic purposes, or are
formed undesirably due to certain patho-physiological conditions,
it is imperative to better understand the evolution and dynamics of
these bubbles for a range of flow conditions, their effect on the sur-
rounding flowfield, as well as the stresses they generate on the ves-
sel walls.

In the context of gas embolotherapy, the bubble sticking pro-
cess likely involves the bubble contacting the vessel wall and then
either sticking immediately or sliding some distance before
becoming stuck or detaching from the wall. Alternatively, one
can imagine a scenario where the vaporization process itself starts
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with the liquid droplets already adhering to the vessel wall. The
presence of three phase contact lines in such situations adds an-
other level of complexity in understanding the bubble dynamics
and the associated flow field and wall stresses. In addition, these
contact lines are potentially regions of high normal and shear
stresses, thus requiring extra attention if we are to ensure that
the underlying endothelium does not get damaged.

Similar studies of multiphase flows, with and without contact
lines, derive their motivation from a wide range of applications
such as recovery of oil from porous media [27,53], microfluidics
[50], thermal ink-jet printers [2,3] and industrial printing pro-
cesses [4,6,16,25,32,38,41,44,45,48].

While the subject of bubble dynamics in the vicinity of solid
boundaries has received significant attention from the experimen-
tal community [12,13,34–36,51,56]. There is a certain paucity of
investigations which consider bubbles that contact the walls. Cav-
anagh and Eckmann [12,13] studied the interfacial dynamics of a
gas bubble in an inclined tube. They kept the bubble stationary by
applying a counter flow to negate its tendency to rise due to
buoyancy. The bubble was observed to wet the upper wall and
the effect of soluble surfactants on the interfacial dynamics as
well as detachment of the bubble from the wall was studied in
detail.

Mathematically modeling the motion of three phase contact
lines is a challenging problem that has been the subject of several
theoretical investigations [1,18,19,23,26,37,42,49]. Two contrast-
ing perspectives have been presented by Hocking [26] and Shi-
khmurzaev [49]. Hocking [26] approached the problem from the
microscopic perspective and included intermolecular forces. He as-
sumed that microscopic contact angle stays fixed in his derivation
of a relationship between the contact angle and the contact line
speed. Shikhmurzaev [49] on the other hand took a thermody-
namic perspective and accounted for the relaxation of fluid proper-
ties in the vicinity of the contact line. In contrast to such physics
based modeling of contact line motion, empirically determined
‘‘Tanner laws” relating the contact line speed to the contact angle
have also been developed [24].

Difficulties associated with moving boundaries make computa-
tional studies of interfacial dynamics a challenging task. When
moving contact lines are introduced, the no-slip boundary condi-
tion at the contact line introduces a contact line stress singularity
[18], making the problem that much more challenging. Cox [17]
developed a contact angle-slip velocity relation and used it along
with the boundary element method to study liquid spreading on
solid surfaces. Schleizer and Bonnecaze [47] used the boundary
integral method to study the displacement of an immiscible drop-
let contacting a wall in flows driven by shear and pressure at zero
Reynolds number. Powell and Savage [43] and Powell et al. [45]
used a Tanner law to model contact line motion in a Lagrangian fi-
nite element method. They circumvented the stress singularity at
the contact line by permitting local tangential slip. Norman and
Miksis [40] used a Navier slip boundary condition to handle the
moving contact lines in their study of a gas bubbles in an inclined
channel. However, none of these studies have considered the ef-
fects of contact angle hysteresis while modeling the contact line
motion. The present study incorporates contact angle hysteresis
in a modified Tanner law and takes a close look at how this affects
the contact line motion and the overall bubble dynamics.

In this paper we formulate a simplified model problem of a bub-
ble sticking and sliding along a wall in a two-dimensional channel
flow. Although the blood flow in the cardiovascular system is dri-
ven by a combination of different mechanisms such as pressure
and gravity, and is pulsatile in general, we restrict our attention
here to pressure driven flows, with constant pressures specified
at the inlet and outlet of the channel. The smallness of Reynolds
numbers in our regime of interest, the microcirculation, allows
us to use the Stokes equation for modeling the surrounding blood
flow (ignoring non-Newtonian effects). The gas inside the bubble is
assumed to be ideal and the bubble expansion/contraction process
is treated as isothermal. The moving three phase contact lines are
modeled using a Tanner law wherein the contact line speed is lin-
early proportional to the deviation of the contact angle from its
equilibrium value. Results are presented both with and without
the effects of contact angle hysteresis.

2. Mathematical model

2.1. Assumptions

The general problem of the transport of a gas bubble through
the microvasculature is tremendously complicated. Microvessels
have highly irregular three-dimensional geometries, flexible walls
with non-trivial stiffness and damping, varying wall surface rough-
ness and properties due to the presence of cells, non-Newtonian
nature of blood, possible breakdown of continuum assumption at
the capillary scales, and uncertain boundary conditions. In addi-
tion, a complete modeling of the gas phase inside the bubble would
require solving the governing equations for compressible flow,
simultaneously with the evolution of the blood flow outside. Also,
since these flows are dominated by surface tension (inertial effects
are negligible in the microcirculation), it becomes very important
to capture the interface evolution accurately, a problem further
complicated by the presence of moving three phase contact lines.
We thus make several assumptions to keep the problem tractable.
To start with, we consider a greatly simplified geometry where we
model our microvessel as a two-dimensional straight channel with
rigid walls. Next, we ignore the particulate nature of blood and
treat it as a continuum. We also assume proportionality between
the stress and rate of strain, thus assuming that blood is a Newto-
nian fluid. In addition, the gas inside the bubble is assumed to be
ideal and the expansion/contraction of the bubble is treated as iso-
thermal. The moving three phase contact lines are modeled using a
simple Tanner law wherein the contact line speed is linearly pro-
portional to the deviation of the contact angle from its equilibrium
value.

2.2. Governing equations

For an incompressible Newtonian fluid, the mass and momen-
tum conservation equations, neglecting contributions from body
forces, can be expressed in their non-dimensional form as

Continuity : ~r �~u ¼ 0 ð1Þ

Momentum : Ca � Re
o~u
ot
þ ð~u � ~rÞ~u

� �
¼ �~rpþ Ca � r2~u ð2Þ

These are the well-known incompressible Navier–Stokes equa-
tions where ~u and p velocity and pressure respectively. Non-
dimensionalization has been performed using L* = half channel
width (Fig. 1) as the reference length scale, U* = c*/l* as the refer-
ence velocity scale (a common choice for interfacial flows, where
c* is the surface tension and l* is the dynamic viscosity), and
P* = c*/L* as the reference pressure scale. Here Ca ¼ l�U�

c� is the cap-
illary number and Re ¼ U�L�q�

l� is the Reynolds number, where q* is
the density. Note that our choice of reference velocity scale makes
the capillary number as defined above equal to one. Although this
causes a disappearance of the capillary number from our governing
equations, we will see below that the interplay between viscous
and surface tension forces will find visibility through the contact
line speed.

As discussed in the introduction, our regime of interest is the
microcirculation which is characterized by very low values of the



Fig. 1. Computational domain. Every fourth grid point is shown here. Grid
stretching is used near the contact lines. Pressure boundary conditions are set at
the inlet and outlet. No slip is imposed on the lower wall. On the upper wall, a
Tanner law is used to specify the contact line velocities. As we move away from the
contact lines, the velocity linearly goes to zero, i.e. the no slip condition. All the
simulations presented here start with a semi-circular bubble of radius 1 and an
initial bubble pressure Pb.
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Reynolds number (viscous forces dominate inertia forces). A scal-
ing argument tells us that the contribution from the unsteady
and convective inertia terms in Eq. (2) (the left hand side) tends
to zero for Re� 1. Hence in the very low Reynolds number limit
we can further simplify our model by dropping the inertia terms
from Eq. (2) to obtain

Stokes Equation : �~rpþr2~u ¼ 0 ð3Þ
2.3. Numerical method

Being able to reduce our problem to a Stokes flow allows us to
use the fact that the solution of linear, elliptic, homogenous partial
differential equations can be represented by boundary integrals
that involve the unknown function and its derivatives. For two-
dimensional Stokes flow

ckjukð~xoÞ ¼
�1

4pCa

Z
C

fið~x;~x0ÞGijð~x;~x0Þdlð~xÞ

þ
Z

C
uið~xÞTijkð~x;~x0Þnkð~xÞdlð~xÞ ð4Þ

where C is the selected flow boundary, ~f ¼ r �~n is the modified
stress, r ¼ ð�p� Bo �~eg �~xÞI þ Caðr~uþ ½r~u�TÞ is the modified stress
tensor,~n is the normal pointing into the domain and ckj is the tensor
due to stress jump at the boundaries (=dkj/2 for smooth boundaries).
Gij and Tijk are the two-dimensional Stokeslet and the associated
stress field respectively, defined as

Gij ¼ �dij ln j~x�~x0j þ
ðxi � x0iÞðxj � x0jÞ
ð~x�~x0Þ2

ð5Þ

Tijk ¼ �4
ðxi � x0iÞðxj � x0jÞðxk � x0kÞ

ð~x�~x0Þ4
ð6Þ

This formulation allows us to use the boundary element method
(BEM) [5,9,46]. In the current study, we use quadratic elements to
compute the integrals while solving Eq. (4) (see Fig. 1 for a pictorial
representation of how the computational boundary is discretized
into a series of quadratic elements).

2.4. Initial and boundary conditions

All the simulations presented here start with a semi-circular
bubble attached to the upper channel wall (Fig. 1). An initial bub-
ble pressure is specified. Pressure boundary conditions are im-
posed at the inlet and outlet. The no-slip boundary condition is
used on the lower channel wall. On the upper channel wall, we
have the presence of two contact lines whose velocity is computed
using a Tanner’s law (Greenspan1978) as follows [expressions are
given here for the front contact line; the signs are opposite for the
rear contact line]

ucl ¼ �kðhD � hSÞ ð7Þ

where hD is the dynamic contact angle (varies with time) between
the bubble surface and channel wall at the contact line, while hS

is the static contact angle (an ‘‘equilibrium” value corresponding
to a stationary bubble). Thus, in this model, the contact line moves
with an intention to restore the contact angle to its ‘‘equilibrium”
value, at a speed that is proportional to the deviation of the contact
angle from the same. If we include contact angle hysteresis, the con-
tact line motion is governed by a modified Tanner law

ucl ¼ �kðhD � hAÞ for hD < hA

ucl ¼ �kðhD � hRÞ for hD > hR

ucl ¼ 0 for hA < h < hR

ð8Þ

where hA and hR the advancing and receding contact angles respec-
tively. As we move away from the contact lines, the velocity on the
upper wall linearly decreases to zero (on a stretched grid – see
Fig. 1), i.e. the no-slip boundary condition, to avoid singularities
at the contact lines. Note that the contact line velocity is expressed
in its non-dimensional form in the expressions above. Noting that
velocities in our problem are being non-dimensionalized using the
reference velocity scale U* = c*/l*, the non-dimensional contact line
velocity can be expressed in terms of the relevant dimensional
quantities as ucl ¼ u�cll�=c�. Thus the relative magnitudes of viscous
and surface tension forces express themselves as a ‘‘contact line
capillary number” in the non-dimensional contact line velocity.
The stress boundary condition at the bubble interface is given by

D~f ¼ j �~n ð9Þ

where j is the curvature of the interface (computed using cubic
splines).

The values of the proportionality constant (k) in Tanner’s law
and the static contact angle (hS) (or the advancing and receding
contact angles when hysteresis effect is included) depend on the
properties of the two fluids and the surface. In other words, they
can be treated as parameters that express the dependency of the
contact line dynamics on the specific solid, liquid and gas phases
present in the problem. We have investigated results correspond-
ing to a range of these parameters. In this paper we present results
for hS = 70� and k = 2.0. For the simulations with contact angle hys-
teresis, we use hA = 50� and hR = 70�. We find these values to be
suitable for highlighting some salient features of this study.

Once the flow-field is solved for with these boundary condi-
tions, the following kinematic boundary condition is used to ad-
vance the interface shape in time using a simple Euler integration

o~Y
ot
�~n ¼~u �~n ð10Þ

The kinematic boundary condition simply implies that at any
given point, the interface ð~YÞ moves at the local velocity ð~uÞ. Once
the interface is advanced in time in this manner, the new bubble
volume is computed and the bubble pressure is updated using
the ideal gas law for isothermal conditions, i.e. bubble pressure
times the bubble volume is kept constant. We then solve for the
flow-field for this new bubble shape and pressure with the same
boundary conditions, and the algorithm repeats itself in this
manner.

3. Results and discussion

Before we start taking a close look at the results, a few com-
ments are in order regarding the thought process behind the
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design of these simulations. We are looking at the evolution and
dynamics of bubbles in a pressure environment prescribed by
specifying fixed pressures at the inlet and outlet of the channel.
Pressure boundary conditions specified in this manner affect the
overall problem in two ways. Firstly, the pressure drop across
the channel sets up a ‘‘background” flow which is expected to
sweep the bubble along. Secondly, the evolution of the bubble
itself (for example, whether it expands or contracts, and the rate
at which it does so) depends strongly on the interplay between
the initial bubble pressure, initial interface curvature and the
surrounding pressure environment. For a bubble to be in perfect
static equilibrium with the surrounding fluid, the stress jump
condition (Eq. (9)) has to be exactly satisfied at each point along
the interface, i.e. the surface tension and pressure exerted by the
surrounding fluid on the bubble interface should exactly balance
the pressure force exerted on the interface from within the bub-
ble. Thus, for a given pressure environment, whether the bubble
initially expands or contracts, would depend on the specific com-
bination of the initial interfacial curvature and pressure. By start-
ing all our simulations with a semi-circular bubble of radius 1
(corresponding to a uniform initial curvature of 1 along the inter-
face), we reduce the dependency of initial bubble behavior (in
terms of expansion vs. contraction) to just one parameter, i.e.
the initial bubble pressure. We consider the pressure environ-
ment set by specifying p(in) = 2; p(out) = 1 and study the evolu-
tion of bubbles with initial pressures of 1, 2, 4 and 8 to allow
possibilities of initial bubble expansion as well as contraction,
and thus allow us to compare and contrast these situations. We
will present the effect of initial curvature on the long term
dynamics of bubbles in a separate study.

In addition to the interplay between the initial bubble condi-
tions and the surrounding pressure field, the contact line dynamics
has a bearing on the how the bubbles evolve. The behavior of the
contact lines in turn depends on the properties of the solid, liquid
and gas phases present in the problem. Contact lines move with an
intention to restore the contact angles to their static value. If the
static contact angle is less than 90�, then for an initially semi-circu-
lar bubble, the contact lines would want to move inward and hence
increase the interfacial curvature, which further has the effect of
requiring a lower bubble pressure to support the interface via
the stress jump condition. An obtuse static contact angle would re-
sult in exactly the opposite behavior, with the contact lines moving
outwards and hence a decrease in the interfacial curvature. In this
case, a higher bubble pressure would be needed to satisfy the
stress jump condition and hence achieve equilibrium. In the cur-
rent study, we restrict our attention to a static contact angle value
of hS = 70� (hA = 50� and hR = 70� when we include contact angle
hysteresis effects). As explained above in Section 2.4, we find these
values to be suitable for the salient features we want to highlight in
this paper.

Another aspect of contact line behavior that can affect the
overall bubble evolution and dynamics is the effect of contact
angle hysteresis wherein the contact lines advance when the
dynamic contact angle becomes less than the advancing static
contact angle, while the dynamic contact angle has to become
greater than the receding static contact angle for the contact lines
to recede. For values of the dynamic contact angle between these
advancing and receding static contact angles, the contact lines do
not move. The effect of contact line motion on the interfacial cur-
vature is thus of a different nature when contact angle hysteresis
is present. We have run simulations both with and without the
presence of contact angle hysteresis, and we compare and con-
trast the results from the two sets of simulations. As mentioned
above, for the cases with contact angle hysteresis, we have set
the advancing and receding contact angles to hA = 50� and
hR = 70� respectively.
3.1. Without contact angle hysteresis

Fig. 2 shows the interface evolution for initially semi-circular
bubbles of radius 1 and internal pressures 1, 2, 4 and 8 (parts a,
b, c and d of the figure), adhering to a wall (hS = 70�; no contact an-
gle hysteresis) of a 2D channel, in a pressure environment pre-
scribed by setting p(in) = 2; p(out) = 1. An initial bubble pressure
of 1 is less than the requirement for equilibrium with the sur-
rounding pressure field. This results in a contraction of the bubble
(Fig. 2a). The extent of contraction decreases as we traverse the
bubble from left to right. This is as expected since the surrounding
pressure is decreasing in this direction. As was discussed above,
the surrounding pressure field, in addition to causing a contraction
of the bubble in this manner, also causes the bubble to slide to the
right due to the pressure gradient along the channel. The tendency
of the contact angles to continuously try and adjust to the static va-
lue of hS = 70�, via contact line motion as prescribed by the Tanner
law, gives the bubble its ‘‘balloon” like shape. For an initial bubble
pressure of 2 (Fig. 2b), the extent of contraction (and the rate at
which this contraction takes place) is lesser, since this initial bub-
ble pressure is closer to the requirement for equilibrium with the
surrounding pressure field. The other features are similar with
the left side of the bubble contracting more and the background
pressure drop across the channel causing the bubble to slide. The
balloon like shape is more clearly visible here.

For initial bubble pressures that are higher than the require-
ment to maintain equilibrium with the surrounding pressure field,
the bubble expands. Fig. 2c shows the interface evolution for an
initial bubble pressure of 4. Again, the fact that the surrounding
pressure decreases as we move along the channel causes the right
side of the bubble to expand more. This background pressure gra-
dient also causes the bubble to slide in the direction of the flow. A
higher initial bubble pressure of 8 causes a greater expansion
(Fig. 2d). As the bubble size increases significantly, the lower chan-
nel wall clearly makes its presence felt by causing the interface to
flatten, resulting in an elongated bubble shape.

Fig. 3 shows how the bubble pressure and volume change in
time as the simulation progresses. It can easily be seen that the
bubble expansion/contraction, to achieve a pressure within that
is in equilibrium with the surroundings, dominates initially with
rapid changes in bubble pressure and volume. At later times, as
the bubble continues to slide along the channel wall into ever-
decreasing pressure surroundings, its volume increases at a slow
rate with a corresponding decline in the pressure within.

Fig. 4 shows the temporal evolution of contact line speeds. As
expected, the front contact line initially moves rapidly to the left
(negative values of the contact line speed) while the rear contact
line does the opposite (positive values of the contact line speed),
both with a view towards adjusting the contact angle to its static
value of hS = 70�. And as the contact angle approaches this value,
the contact line speeds also decrease in magnitude as per the Tan-
ner law. The front contact line eventually changes direction and
starts moving to the right, as the bubble continues to slide along
the upper channel wall. The rear contact line also slows down after
the initial contraction process is over. In the cases of expanding
bubbles, the contact line speed profiles show overshoots. For
example, the front contact line for both the expanding bubbles
changes direction from moving towards the left to moving towards
the right very early in the simulation, and moves with a positive
contact line speed that is set by the rapid initial expansion of the
bubble. As the expansion process slows down, the front contact
line speed also decreases and is eventually driven by just the slid-
ing motion of the bubble. For the case with initial bubble pressure
of 8, the initial expansion process is so dominant, that even the rear
contact line moves sharply to the left very soon after the simula-
tion starts, and later settles back to a positive value when the



Fig. 2. Evolution of bubble interface for p(in) = 2; p(out) = 1 and initial bubble pressures of: (a) 1, (b) 2, (c) 4 and (d) 8.

Fig. 3. Evolution of bubble pressure (solid line) and bubble volume (dotted line) for
p(in) = 2; p(out) = 1 and initial bubble pressures of 1 [�], 2 [e], 4 [O] and 8 [M].

Fig. 4. Evolution of front (solid line) and rear (dotted line) contact line speeds for
p(in) = 2;p(out) = 1and initial bubble pressures of 1 [�], 2 [e], 4 [O] and 8 [M].
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expansion slows down and the dominant bubble motion is it’s slid-
ing along the channel wall. Note that as the bubble continues to
slide along the wall into lower pressure regions, the front contact
line moves at a speed higher than the rear contact line, and this dif-
ference between the front and rear contact line speeds increases as
the bubble becomes larger. This difference is also larger for bubbles
that are larger at the end of initial expansion/contraction process.
These observations can be explained on the basis that the front
interface of the bubble advances into lower pressure regions, thus
allowing the pressure difference across it to push it forward in
addition to the bubble as whole being swept along by the sur-
rounding fluid. Another observation that we can make is that larger
bubbles slide faster.

Fig. 5 shows how the flow rates at the inlet and outlet vary in
time as the bubble evolves. The analytically obtained value of the
flow rate through the channel without any bubble [and all other
conditions exactly the same] is Q = 1/8. This is also plotted in
Fig. 5 so that we can more clearly discuss how the bubble affects



Fig. 6. Normal stress profiles along channel walls for initial bubble pressure = 1 and
p(in) = 2; p(out) = 1, at t = 0 (�), 1 (M), 2 (O), 4 (.), 8 (/), 14 (e) and 20 (	).
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the flow rate for the different cases considered here. For the cases
with initial bubble pressures of 1 and 2, the initial rapid contrac-
tion of the bubble has the effect of sucking in the fluid from both
ends of the channel. This results in an increase of the flow rate at
the inlet and a decrease at the outlet. In fact, the flow rate at the
outlet is actually negative during the initial rapid contraction of
the bubble, i.e. we have backflow into the channel. On the other
hand, for the cases where the bubble initially expands, the bubble
pushes the flow outwards in both directions initially. This result
here is the opposite of what we observe for an initially contracting
bubble. The flow rate at the inlet decreases (and is in fact negative
during the initial rapid expansion of the bubble), while the flow
rate at the outlet is increased. After the initial expansion/contrac-
tion is over and the bubble slides along the wall due to the back-
ground flow, the inlet and outlet flow rates settle down to
positive values. The inlet flow rate is less than the flow rate with-
out any bubble owing to the occlusion effect of the bubble for all
the cases considered here. The outlet flow rate is consistently high-
er than the inlet flow rate. This is due to the front portion of the
bubble interface ‘‘driving” the flow as it advances into the lower
pressure region of the channel. This becomes increasingly apparent
for larger bubbles. In fact, for our case with initial bubble pressure
of 8, the eventual outflow rate is higher than the flow through the
channel without any bubble. Hence the occlusion effect is felt up-
stream of the bubble, a fact that can prove useful if we want to
shunt the flow away from any section of the vasculature.

Let us now take a close look at how the bubble evolution and
dynamics affects the normal and shear stresses along the channel
walls. We focus on the two extreme cases in terms of the initial
bubble dynamics (these correspond to initial bubble pressures 1
and 8 respectively). Figs. 6 and 7 present the normal and shear
stress profiles along the channel walls for the case with an initial
bubble pressure of 1. We see that the initial rapid contraction of
the bubble creates a suction effect as indicated by the cusps in nor-
mal stress profiles. As expected, this suction effect is felt more
strongly by the lower channel wall. The contact lines have extre-
mely high values of normal stress as can be evidenced by peaks
in the profile. As time progresses, the suction effect reduces along
Fig. 5. Evolution of flow rates at inlet (Q(in); solid line) and outlet (Q(out); dotted
line) for p(in) = 2; p(out) = 1 and initial bubble pressures of 1 [�], 2 [e], 4 [O] and 8
[M].

Fig. 7. Shear stress profiles along channel walls for initial bubble pressure = 1 and
p(in) = 2; p(out) = 1, at t = 0 (�), 1 (M), 2 (O), 4(.), 8 (/), 14 (e) and 20 (	).
with the rate of bubble contraction and the normal stress profiles
relax. The contact line stresses also decrease, and eventually their
sign changes when the bubble simply slides along the wall with
both the contact lines moving in the same direction. At later times,
the only locations where the wall normal stress is significantly dif-
ferent from the situation without any bubbles are the contact lines.
In the case of shear stress profiles, the ‘‘sucking in” of the fluid from
both ends of the channel by the initially contracting bubble causes
the shear stress to increase in magnitude both upstream and
downstream of the bubble. The signs are of course opposite in
these two regions since the flow is in opposite directions. At later
times when the bubble is swept along by the background flow,
the shear stresses along the walls also decrease. The only excep-
tions again are the contact lines, which continue to be high stress
regions with peaks in the shear stress profiles.

Figs. 8 and 9 present a contrast to the above situation with nor-
mal and shear wall stress profiles for the case with initial bubble
pressure of 8. Here the bubble expands rapidly resulting in bulges



Fig. 8. Normal stress profiles along channel walls for initial bubble pressure = 8 and
p(in) = 2; p(out) = 1, at t = 0 (�), 1 (M), 2 (O), 4 (.), 8 (/), 14 (e) and 20 (	).

Fig. 9. Shear stress profiles along channel walls for initial bubble pressure = 8
andp(in) = 2; p(out) = 1, at t = 0 (�), 1 (M), 2 (O), 4 (.), 8 (/), 14 (e) and 20 (	).
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in the normal stress profiles. This is more pronounced on the lower
channel wall as it serves to work against the bubble expansion and
results in a flattening of the interface and hence an elongation of
the bubble. Again, as the bubble expansion slows down and the
dominant bubble motion becomes its sliding along the channel
wall, the bulge in the normal stress profiles is considerably re-
duced, and the stress profiles are converging to a situation without
any bubble in the channel. Thus, at later times, the presence of the
bubble does not seem to affect the wall normal stresses much. The
exceptions are the contact lines, which are associated with peaks in
the normal stress profiles and continue to threaten the underlying
endothelium with high values of stress. The shear stress profiles
again show an increase in magnitude both upstream and down-
stream of the bubble. Note that the signs are opposite of the case
where the bubble contracts. This is expected since the expanding
bubble pushes the fluid away and out of the inlet and outlet, as op-
posed to the contracting bubble pulling the fluid inward, the two
cases thus setting the fluid motion in opposite directions. At later
times, the shear stress values decrease along the wall except for
the contact lines which continue to be associated with peaks in
the profiles. Note that while the normal stress profiles in both cases
seem to converge to profiles that we would find without any bub-
ble, the shear stress profiles clearly show a difference in magnitude
between the upstream and downstream directions even for later
times. This corresponds with the outflow rate being higher than
the inflow rate for all the cases owing to the front interface of
the bubble pushing the fluid as the bubble advances along the
channel.

3.2. With contact angle hysteresis

We now repeat the above simulations with contact angle hys-
teresis incorporated in the formulation, i.e. the contact line veloc-
ities are specified using the modified form of Tanner’s law as given
in Eq. (8). The advancing and receding values of the static contact
angle are set to be 50� and 70� respectively. Results are presented
in exactly the same order as above and the focus is on determining
the effects of contact angle hysteresis on the bubble motion and in-
duced wall stresses.

Fig. 10 presents the evolution of bubble interface for the four
cases, i.e. initial bubble pressures of 1, 2, 4 and 8. In the first case,
we notice that incorporation of contact angle hysteresis dramati-
cally changes the bubble evolution. Without any hysteresis, the
bubble continued to slide along the wall after its initial rapid con-
traction. However, here the bubble comes to a stop. While the force
exerted on the bubble by the surrounding fluid attempts to keep
the bubble sliding along the wall, the contact forces at the contact
lines resist this motion. The value of the contact forces would de-
pend on several factors such as the contact line speeds, contact an-
gles, properties of the surface and the specific liquid and gas
present in the problem. While a simple Tanner law is not intended
to model the effect of all these parameters, when we include con-
tact angle hysteresis we do allow for the situation where the con-
tact angles corresponding to a perfect counter-balance between
the contact forces and the force exerted by the surrounding fluid
are between the advancing and receding static contact angle val-
ues, which results in zero contact line velocities. This allows a sit-
uation where the bubble comes to a halt. While a situation similar
to this can be hypothetically envisioned in the absence of contact
line hysteresis, with both contact angles exactly equaling the static
contact angle value for the above mentioned perfect counter-bal-
ance, it is easy to see that it is a very restrictive situation and the
even the slightest perturbation of the contact angles would again
set the contact lines in motion and disturb what is already a very
precarious balance.

In the other three cases considered here, the bubble does not
come to a halt as above, but exhibits a stick-slip behavior. This is
more clearly observable for the front contact line which, after mov-
ing initially to reduce the contact angle to 70�, has to then wait un-
til the contact angle decreases below 50� (due to the bubble further
leaning into the flow) before moving again. The rear contact line
also shows this behavior in the case with initial bubble pressure
of 8. As was pointed out in the discussion for the first set of simu-
lations, the bubble expansion is so pronounced in this case that the
rear contact line actually moves to the left initially and later
changes direction and starts moving to the right as the bubble
slides along with the flow. During this reversal of direction, the
contact angle value spends some time between the limits of 50�
and 70�, thus causing the rear contact line velocity to stay zero dur-
ing this time. This stick-slip behavior has one more consequence.
When the contact lines are in their ‘‘pinned” state with zero veloc-
ity, the interface keeps evolving in accordance with the stress jump
condition (unless we have a situation like our first case with an ini-
tial bubble pressure of 1 where the bubble comes to a complete
stop). This results in a more pronounced ‘‘balloon” like shape of
the bubble.



Fig. 10. Evolution of bubble interface for p(in) = 2; p(out) = 1 and initial bubble pressures of: (a) 1, (b) 2, (c) 4 and (d) 8 with contact angle hysteresis.

Fig. 11. Evolution of bubble pressure (solid line) and bubble volume (dashed line)
for p(in) = 2; p(out) = 1 and initial bubble pressures of 1 [�], 2 [e], 4 [O] and 8 [M]
with contact angle hysteresis.
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As we have seen earlier, after the rapid initial contraction/
expansion of the bubble, the long term dynamics of the bubble
are governed by its response to the decreasing surrounding pres-
sure as it slides along the channel into the lower pressure regions,
causing it to slowly expand and reduce its internal pressure to
maintain equilibrium with its surroundings. Now, due to the
stick-slip behavior at the contact lines that involves periods of
times when the contact lines do not move, the bubble takes a long-
er time to slide the same distance when compared to our earlier
simulations without any hysteresis effects. The rate at which the
bubble experiences a decrease in the surrounding pressure field
is thus slower. This should correspond to a slower rate of expan-
sion of the bubble (and correspondingly a slower rate of the decline
of pressure within the bubble). We observe these features in Fig. 11
where the evolution of bubble pressure and volume are presented.
The coming to a halt of our bubble with an initial pressure of 1 is
also reflected in these results as the pressure and volume of the
bubble converge to values that stay constant thereafter. For the
other three cases, the long term dynamics are slower than the case
without any hysteresis.

Fig. 12 shows the variation of front and rear contact line speeds
with time, to further elucidate the features of the stick-slide behav-
ior observed in the presence of contact angle hysteresis. The halt of
the bubble with an initial pressure of 1 is confirmed by the fact that
both the contact lines reach a velocity of zero. The front contact
line of course stops first since the front contact angle reduces faster
due to the bubble leaning into the flow. This corresponds to what
we see in the evolution of bubble interface in Fig. 10a. The front
contact line shows the stick-slide behavior in all the cases, with
the amount of time it spends at rest decreasing as the initial bubble
pressure increases. This makes sense from two perspectives. First, a
higher initial bubble pressure will encourage the outward motion
of the bubble interface and hence the forward motion of the front
contact line. Second, larger bubbles lean more into the flow thus
resulting in a quicker decrease of the front contact angle to values
below the advancing contact angle. The observation made above,
that the rear contact line also exhibits the stick-slide behavior when
the bubble expands rapidly enough initially (our case with the ini-
tial bubble pressure of 8), is substantiated further when we look at
the variation of the rear contact line speed with time for this case.
We see that after dipping into negative values (i.e. moving to the
left because of the rapid expansion), it slows down and comes to



Fig. 12. Evolution of front (solid line) and rear (dashed line) contact line speeds for
p(in) = 2; p(out) = 1 and initial bubble pressures of 1 [�], 2 [e], 4 [O] and 8 [M] with
contact angle hysteresis.

Fig. 13. Evolution of flow rates at inlet (Q(in); solid line) and outlet (Q(out); dashed
line) for p(in) = 2; p(out) = 1 and initial bubble pressures of 1 [�], 2 [e], 4 [O] and 8
[M] with contact angle hysteresis.

Fig. 14. Normal stress profiles along channel walls for initial bubble pressure = 1
andp(in) = 2; p(out) = 1, with contact angle hysteresis, at t = 0 (�), 1 (M), 2 (O), 4 (.),
6 (/), 8 (e), 14 (	) and 20 (*).
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a halt, and starts moving to the right again only after the interface
evolution results in the rear contact angle becoming greater than
the receding contact angle value.

An interesting consequence of the contact angle hysteresis ef-
fect is that the overshoot in the front contact line velocity profiles
for the expanding bubble is reduced dramatically. The initial rapid
expansion of the bubble causes the front contact angle to decrease
quickly. When this contact angle becomes lesser than the receding
contact angle value, the contact line comes to a halt, and waits till
the contact angle goes below the advancing contact angle value be-
fore moving again. During this period when the contact line is not
moving, the bubble keeps expanding rapidly to achieve equilib-
rium with its surroundings. Thus the expansion process, and the
corresponding change in the front contact angle, slows down con-
siderably by the time the front contact line starts moving again. If
we don’t include contact angle hysteresis, this period where the
contact line sits still while the bubble relaxes is absent, thus forc-
ing the contact line to move at a rapid speed dictated by the bubble
expansion process, go through an overshoot, and then eventually
move at a speed that is dictated by the long term evolution of
the bubble as it gently slides along the channel wall.

Let us now take a look at how including contact angle hysteresis
affects the inflow and outflow rates (Fig. 13). The initial behavior is
governed by the rapid contraction or expansion of the bubble and
results are similar for both with and without hysteresis. Hysteresis
affects the long term evolution of the flow rates. In this regard, the
very first observation we make is that the flow rates towards the
end of the simulations for all the four cases, both at the inlet and
outlet, are lower when we include hysteresis. Searching for an
explanation for this brings our attention to two factors. Firstly, as
was pointed out above, inclusion of hysteresis leads to periods
when at least one of the contact lines is pinned down at a location,
while the bubble interface keeps evolving. It was also pointed out
that this feature, in the case of acute static contact angles, leads to
a more pronounced balloon like shape of the bubble, with the
bubble protruding into the channel to a greater extent. This can
offer a greater blockage to the flow thus reducing a lower inflow
rate. Secondly, for the cases where the bubble continues to slide
along the channel, the outflow rate keeps increasing slowly as
the front interface keeps pushing the fluid while advancing into re-
gions of ever decreasing surrounding pressures. Since the bubble
takes longer to travel the same distance when contact lines stick
and slide, we would expect to see larger outflow rates if we con-
tinue these simulations further in time.

In the case with an initial bubble pressure of 1, both the inflow
and outflow rates are the same after the bubble comes to a stop,
and the value they converge to is lower than the analytically com-
puted flow rate for a Stokes flow through the channel for the same
conditions without any bubble. The reason behind the outflow rate
having been consistently higher than the inflow rate, for all the
earlier simulations without hysteresis, was that the front interface
of the sliding bubble pushes the fluid away as it advances into the



Fig. 15. Shear stress profiles along channel walls for initial bubble pressure = 1
andp(in) = 2; p(out) = 1, with contact angle hysteresis, at t = 0 (�), 1 (M), 2 (O), 4 (.),
6 (/), 8 (e), 14 (	) and 20 (*).

Fig. 16. Normal stress profiles along channel walls for initial bubble pressure = 8
and p(in) = 2; p(out) = 1, with contact angle hysteresis, at t = 0 (�), 1 (M), 2 (O), 4 (.),
6 (/), 8 (e), 14 (	) and 20 (*).

Fig. 17. Shear stress profiles along channel walls for initial bubble pressure = 8 and
p(in) = 2; p(out) = 1, with contact angle hysteresis, at t = 0 (�), 1 (M), 2 (O), 4 (.), 6 (/),
8 (e), 14 (	) and 20 (*).
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lower pressure regions of the channel. This feature is of course ab-
sent when the bubble comes to a stop. Thus the ability to predict
situations where the bubble sticks, when we include contact angle
hysteresis, has an important consequence with respect to our de-
sire to occlude flow to a tumor. Not only can we think of a reduc-
tion in inflow rate as a way to shunt flow away to different regions
of the vasculature, we can also identify conditions in which we
would obtain sticking, and predict the corresponding percentage
occlusion at the vessel outlet. This would be a separate study in it-
self, one that we expect to report in the near future.

We now turn our attention to the wall normal and shear stress
profiles. We again look at the two extreme cases in terms of the ra-
pid initial bubble contraction/expansion. Figs. 14 and 15 present
the wall normal and shear stress profiles at a series of times for
the case with initial bubble pressure of 1 [rapid initial contraction],
while wall stresses for the case with initial bubble pressure of 8
[rapid initial expansion] are presented in Figs. 16 and 17. As was
already seen in the earlier simulations without any hysteresis ef-
fects, the rapid initial contraction (or expansion) of the bubble re-
sults in cusps (or bulges) in the wall normal stress profiles. The
wall shear stress also increases as the fluid rushes in (or out)
through the channel inlet and outlet, with opposite signs upstream
and downstream of the bubble corresponding to opposite direc-
tions of flow in these areas. These features remain unchanged even
when contact angle hysteresis is included. An interesting observa-
tion is that the normal contact stress at the front contact line, for
the case with an initial bubble pressure of 1, increases substantially
as the bubble comes to a halt (see Fig. 14). The shear contact stress,
on the other hand, shows an increase at the rear contact line for
this case (see Fig. 15). Thus, although we can attribute the sticking
of the bubble to the contact stresses resisting the sliding motion, a
detailed understanding of how this happens is yet to be attained.

4. Conclusions and future work

We have presented detailed results from a computational study
of a pressure driven 2D channel Stokes flow with a bubble sticking
and sliding along one of the walls using the boundary element
method (BEM). The moving three phase contact lines were mod-
eled using a Tanner law wherein the contact line speed is linearly
proportional to the deviation of the contact angle from its equilib-
rium value. Results are presented with and without the effect of
contact angle hysteresis. It is shown that the initial rapid contrac-
tion or expansion of the bubbles to achieve local equilibrium with
the surrounding pressure field results in cusps and bulges respec-
tively in the wall normal stress profiles. This will have a strong
bearing on the gas embolotherapy strategy as we need to ensure
that we do not cause any undesirable collapse or rupture of the
blood vessels. The wall shear stress also increases (with opposite
signs upstream and downstream of the bubble) as the fluid initially
rushes in or out of the channel inlet and outlet. Contact lines are
found to carry peaks in the wall normal and shear stress profiles
at all times. This threatens the well being of the underlying endo-
thelium and is a concern that has to be addressed in the design of
the emobotherapy technique. In the long term, bubbles slowly ex-
pand as they slide along the channel wall. Including contact angle
hysteresis allows us to predict the stick-slide behavior of bubbles,
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which in turn affects the long term evolution and dynamics of the
bubbles.

A close look has also been taken at the effect of these bubbles on
the flow rate through the channels by comparing the inflow and
outflow rates with the analytically computed value of the flow rate
for a Stokes flow through a 2D channel for the conditions without
any bubbles. Initially, the flow rates at the inlet and outlet are dri-
ven by the rapid contraction (fluid rushes in from both ends) or
expansion (fluid rushes out). At later stages when the bubble evo-
lution and dynamics are governed by its slow slide along the wall
to the lower pressure region, we see that the inflow rate is always
lower than what we would have without any bubble. A bubble can
thus be used to shunt the flow away from a given portion of the
vasculature. It is also seen that the advancing interface of the bub-
ble pushes the fluid along, thus causing the outflow rate to be high-
er than the inflow rate. When we include contact angle hysteresis,
we can have cases where the bubble comes to a halt. In such situ-
ations, the outflow rate and inflow rate are of course equal, thus
signifying overall occlusion of the flow through the channel. Since
contact angle hysteresis is an effect present in reality, it will be of
use to predict the range of conditions for which bubbles of different
sizes stick and compute the percentage of occlusion for these cases.

The study presented here varied only the initial bubble pres-
sure, while keeping the initial interfacial curvature, static contact
angles, contact line speed (through the proportionality constant
in the Tanner law), channel dimensions, and inlet and outlet pres-
sures the same. While this study has served to reveal many impor-
tant features of the bubble evolution and dynamics and its
influence on the surrounding flow field and the wall stresses, there
is a vast parameter space yet to be probed carefully. In addition,
many of the simplifying assumptions have to be relaxed to allow
for more realistic simulations that include effects of wall flexibility
and roughness, non Newtonian nature of blood, pulsatility of flow,
etc.
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